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Conditional quantum dynamics with several observers
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We consider several observers who monitor different parts of the environment of a single quantum system
and use their data to deduce its state. We derive a set of conditional stochastic master equations that describe
the evolution of the density matrices each observer ascribes to the system under the Markov approximation,
and show that this problem can be reduced to the case of a single “superobserver,” who has access to all the
acquired data. The key problem—consistency of the sets of data acquired by different observers—is then
reduced to the probability that a given combination of data sets will be ever detected by the superobserver. The
resulting conditional master equations are applied to several physical examples: homodyne detection of
phonons in quantum Brownian motion, photodetection and homodyne detection of resonance fluorescence
from a two-level atom. We introduaelative purityto quantify the correlations between the information about
the system gathered by different observers from their measurements of the environment. We find that observers
gain the most information about the state of the system and they agree the most about it when they measure the
environment observables with eigenstates most closely correlated with the optimally prediciabtée basis
of the system.
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[. INTRODUCTION measurement channels. In Sec. IV we apply the formalism to
the quantum Brownian motion at zero temperature, a model
Information about the state of a quantum system is usufor which coherent states are perfect pointer states. Observ-
ally obtained not from direct measurements on the systengrs trying to infer the state of the oscillator, initially prepared
but rather by monitoring its environmefit—3]. Therefore, in a quantum superposition of staté$Schrodinger cat
the environment is not only a reservoir that selectively destate”) (|2)+|—2))/y2 of large amplitude coherent states,
stroys quantum coherence, but also a “communication chareventually fully agree when they measure in a basis corre-
nel” through which observers find out about the sysfeth ~ lated to the pointer states. In Secs. V and VI we consider the
The formalism that ascribes to the system a time-dependefitodel of resonance fluorescence of a two-level atom, for
state deduced from a complete measurement of thwhich pointer states do not really exist, and even the most
environment—a quantum trajectory—has been introduce@redictable states are quite unpredictable. We discuss corre-
some time agd5-8]. Persistent monitoring of a quantum lations between single observer state assignments for differ-
system by the environment can single out a preferred set ¢int measurement schemes, such as photodetection and ho-
states, known as pointer states, which are the most robust fodyne detection. Finally, Sec. VIl contains our
spite of the interaction with the environment, that is, leastconclusions.
perturbed by it[9,10. In Ref. [11] we showed that under
reasonable assumptions pointer states remain the most robust Il. CONDITIONAL MASTER EQUATIONS
even when a single observer is performing continuous quan- FOR SEVERAL OBSERVERS
tum measurement on a part of the environment to extract Imagine a svstens led to an environmerf. Th
information about the system. Here we use the formalism of 9 ystend coupied 1o an environmert. The
guantum trajectorie$5—8] to derive a set of conditional state_o_f the environment Is monltored_by a set of dete_:ctors
master equations which describe density matrices inferred b%)‘}(' =1, ... C) in measurement basis that can be differ-

several observers simultaneously performing measuremensu:efggg;g(;r;nr ﬂgﬁé&%ﬁh\{mgghﬁgaﬁiﬁs gr):rr]e(asszr:rc]iia_
on different parts of the environment. The knowledge a give ) 9 P
réc_) tracing over€ as well as over all the records {,}), the

observer has about the system, inferred from his measur : i .
ment records, leads to his single observer density matri _educed de”S'.tY matrix of the SVS@@” evolves according
' “unconditional” master equatioUME)

One can also consider a superobserver with access to all t 2 an

records of all observers. His knowledge about the system is do(t)=dt£Oo(t), (1)

encapsulated in a superobserver density matrix. Both density

matrices evolve according to conditional stochastic mastewithin an infinitesimal time stepgt. HereLO o(t) denotes a

equations that will be derived in the following section. linear superoperatof acting ong. This master equation is
The paper is organized as follows. In Sec. Il we derive‘unconditional” in the sense that all the information about

conditional stochastic master equations for the situatiorthe records of D;} has been ignored. Note that we are as-

where multiple observers monitoring the environment of asuming that this evolution is Markovian, so that the state of

guantum system try to infer its state from their measurementhe system at timé+dt only depends on its state at tirhe

data. Section Il discusses correlations between differenin what fol-
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lows we shall make a still stronger assumption that the statelere P )= Pn,® - @ Pny) projects the state of all de-
of the fragments of the environment prior to the interactiontectors according to the measurement recomst)
with the system is always the same. In particular, the fragj—=1, ... C). Different branches of the wave function of
ments of the environment that have interacted Witlo not  SEp are labeled by different sets/,(t) of possible mea-
interact with it again. This quantum Markov approximation s rement records. A brancki,(t) has a probability

is accurate in a typical scattering situation. Then there is a

natural distinction between input and output fields. The input PINL(1)]1=Trsep Py (1) psen(t)- (4)
field is assumed to be always described by the same density “

matrix x. The output field evolves in a way it must to ac- A hypothetical “superobserver,” who knows all the mea-
count for its outward propagation. It is entangled with thesurement records of all detectors, N, (t)
system, and is eventually measured sufficiently far from the=[N,(t), ... ,Nc(t)], ascribes taS a state given by a mul-
system so that the detection does not disturb the system. #ple observergor superobserveiconditional density matrix
spontaneous emission from, say, a two-level atom in free

space is a particular example of the scattering situation Trep P vy Psen(t) Trep Pty Psen(t)
where the input density matrix is a vacuum state. pINL(1)] TrsTre Pav o poeolD STV (D] :

A. Multiple measurement channels ®)

Suppose that the measurement records are not ignorgwrmalized so that Fp[N,(t)]=1. From the point of view
but, instead, as is typically the case, they are used to extraof the superobserver the set of recosdg(t) actually hap-
information aboutS. Let us further assume th&tincludes pens. His description is necessarily probabilistictaD he
parts{&} numbered by the indek (i=1,...C) and that could only calculate probabilities of different outconjés).
such parts are coupled to the detectd®s}. These detectors (4)], but could not predict his actual set of outcorég(t).
correspond to different measurement channels. We model the We assign to each measurement chanreh observei
measurements by detectBy as a projection of the detector's who knows only his own recortl;(t). He ascribes ta& a
state in a measurement basis with outcomdé(t). In the  state given by a single observer conditional density matrix
example of spontaneous emission the p&fts can be cho-
sen as different directions of photon emission monitored by _ Trep Py psen(t)
different detector$D;}, while dNi(t) may be th_e _numb_er of PINi(D]= Trs TrepPuy o Pseolt) ©)
photons collected by the detectoduring the infinitesimal
time interval fromt to t+dt. No matter how much the mea- conditioned only on his own recoid;(t). It is easy to check
surement is delayed or how long it takes to decohere the statRat the single observer density matrix is an average over the
of the detectoD;, the eventual outcomeN;(t) affects the  superobserver density matrices with all records that are not

knowledge about the state of the system at the im@en  hown to the observeri. Indeed denoting AN

the environment pa; got entangled witls. In general, the —[NL(D), ... Ni(1), ... Ne(t)] a set of strings of mu/itiple

measurement basis can be nonorthogonal a_nd/o_r OVEICOMRannel records that contain the particular recl¢t) in
plete, but in the following, for the sake of simplicity, we channeli. we have

restrict ourselves to the complete orthogonal case.

We assume that at= 0 the state of was a density matrix p[NNi(t)] p[NNi(t)]
2(0). Astime goes on, at every time stelp the systens is pINi(H]= > B B 7
getting entangled with a new fragment of the environngnt Ngim PLN;(t)]

After interaction withS some of these fragments are not

detected, while some other fragmeft$} are measured by The probability distribution for the measurement record
the detector$D;}. After timet the initially uncorrelated state N;(t) is given by

of S+&+ D evolves into an entangled stateep(t) (by D

we are denoting the set of detect¢#®}). Ignoring the state

_ _ N; (1)
of £D we get the unconditional density matrix PN (D]=Trsen Phcy pSED(t)_N%(t) LA™, (8)
B
e(t)=Trgp psen(l), 2 o
. _ which is analogous to Ed4).
which evolves according to the UME, E€l). Let us call The issue of compatibility of density matrices ascribed to
Na(t)=[Ny(t), ... Nc(t)] the set of strings of multiple a system by different observers was first considered by

channels measurement records. Thaiig(t) is a particular  peijerls[12]. He noted that the state assignments of various
history of measurement resuftdN;(t")} on all channels till  observers cannot be arbitrarily different, and proposed that,
timet, and the subscript denotes a particular set of records. in order to avoid contradiction between different state assign-
Then, the unconditional density mati@t) is a sum over all ments, the product of the corresponding density matrices

possible setgV,(t), namely, should be nonzero. A second condition put forward in Ref.
[12], namely, that the different density matrices should com-

Q(I)ZAZ Tren P 1y Psen(t)- (3)  mute, was later shown to be too restrictidS]. Necessary
o) “ and sufficient condition for compatibility of several density
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matrices turns out to be simple4]: Their supports must We can also write down the master equation for the den-
share at least one stathe support of a density matrix is the sity matrix p[N;(t)] that observeii, who knows only his
subspace spanned by all its eigenvectors with nonzero eigepwn recordsN;(t), ascribes to the systeth Using Egs.(7)

values. and(9) we obtain
In our setting the issue of compatibility of various single
observer density matricgg N;(t)] is settled very naturally. dp[Ni(t)]=dt£®p[Ni(t)]+MdNi(t)®p[Ni(t)]. (11

Indeed, the probabilityp[ V,(t)] defined in Eq(4) provides

a measure of compatibility of different sets of outcomes:|ndeed, this equation has the same form as that of the super-
PLN,(t)]=0 when records from different channels in the setobserver Eq(9). The superoperatokgy, ) depends only on
N,(t) are mutually contradictory. It is easy to see that th'sthe measurement resal(t) of observei, and it is defined

condition is equivalent to the prerequisite compatibility,. i'e"as; an average over all records of all other observers unknown
the overlap of suppoitl2—14. Moreover,p[ N, (t)] quanti-

' : ) . ! .__to him,
fies this compatibility, at least in the multiple observer setting
we are about to investigate in more detail. MdNi(t)Qp[Ni(t)]

B. Conditional master equations p[NZi(t)] -

_ R i it
The evolution of the unconditional density matgXt) is B EN,:@) P[N;(t)] MdNZN'(t)Qp[NﬁI Ik

determined by the unconditional master equation, Eg}. N
We now derive master equations that describe the evolution (12)

of the superobserver density matii¥ N, (t)], and of the
density matrixp[ N;(t)] of observeri, conditioned on their WheredNZNi(t) is any string of multiple channel measure-

respective measurement results. Within the Markovian apgent record that contains the particular measurement results
proximation, the master equation for the single observer CONgN,(t) on channel
| .

ditional density matrix has the forib,7]

dp[ N (1) ]=dtLO p[ N (1) ]+ Mg 19O p[ N (D)]. lIl. CORRELATIONS BETWEEN DIFFERENT
‘ (9) MEASUREMENT CHANNELS

In our case of the superobserver that “single observer” has We study correlations between measurement records on

access to all measurement recatd(t). The superoperator différent measurement channels, say channeisdj. It is

- lear that in order to do so it is necessary to compare corre-
Mgy 1 conditions p[NV,(t)] on present measurement re- ¢ X ! .
sultsa(;/)\/ () =[dNqy(t) dNg(t)] that are obtained at sponding recordd\;(t) and N;(t). Therefore, we imagine
ime t Itacan be \ivritt,e.n. .a’s acsum of superoperators thathere is someone who has access to the records on both chan-

N hels, or the two observers with access to channelad j
depend on the measurement results on individual ChanneIéommunicate with each other and share their measurement
MdNa(t):Mle(t)Jr.' T Mang - Eac.h SUPEroperator records, Whatever the case is, we can think that there is a
Man, (v takes density operators to density operators and dgsupejobserver who has access to the two measurement
pends on the particular measurement strategy implementezhannels and whose string of records b¢;(t),N;(t)]. To
in the measurement channel Examples of measurement follow the line of thought of previous sections, we will in-
strategies are point processes, such as photocounting of ogtead consider the superobserver who has access to all mea-
tical fields, and diffusive processes, such as homodyne aurement channels, and whose string of records contain the
heterodyne  detection of optical fields. Also, particular recordN;(t) on channel, and the particular record
May,, @ PLN(D)] is nonlinear inp[ A (t)] and linear in  N(t) on channei, i.e., his string of records is/)*"i
the set of measurement resulisV,(t). The nonlinearity — =[N(t), ... Ni(t), ... Nj(t), ... Ng(t)]. Here the sub-
comes into play in Eq(5) when we normalize the density scripty denotes a particular set of multiple channel records
matrix. The action of this superoperator ppN,(t)] is @  that contains recordsl;(t) and N;(t) in channelsi andj,
generalization of the apparent “collapse of the wave functespectively.
tion” experienced by the superobserver confined to the We define the average relative purity between the states
branchW,(t). For a derivation of the superoperatovégy, ) ascribed toS by two such observerisandj as

in terms of the projector?Ni(t) see the formalism of opera-

tions and effects described in Refé5,16]. 0. (1)
When measurement results\,(t) are ignored,o(t) N

should follow the UMEEg. (1)]. In other words, the sum of

the superoperataMgy () over all possible strings of mea- X Trsp[Ni (1) 1p[N;(t)]

surement resultd \V,(t) should vanish, that is,

— [NNi(t)ij(t)]
NOR 0 NN
y

= > pINi(D),N;(D)ITrsp[Ni(t) Tp[N;(D)],

Ny (1)

> My, @plNo(D)]=0. (10)

dAT() (13
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wherep[ N;(t),N;(t)] is the joint probability distribution for
recordsN;(t) andN;(t), given by

>

AN
Y

19

p[Ni(t),Nj(t)]Z p[N':i(t)’Nj(t)].

We also introduce the average relative pufxyt) between
the states ofS ascribed by the observérand the superob-
server, whose respective measurement recordbltg and

PHYSICAL REVIEW A 69, 022109 (2004

AN O=dM). (19)
We emphasize again that, in the study of correlations, we
consider the situation when the single channel measurement
record N;(t) is contained in the superobserver records
=Ngi(t). Similarly, when we study correlations between
measurement records on two different channedsd j, we
consider the situation when the two single channel measure-
ment recordsN;(t) and N;(t) are both contained in the su-

/\/Zi(t), i.e., the particular recortll;(t) on channel is con-  perobserver record/sfﬁ=/\/gi(t)’“i(t).
tained in the superobserver string of multiple channel The conditional master equation for the superobserver,
recordsNgi(t)z[Nl(t), ... Ni(t), ... Nc(t)]. Hereg de-  Which conditions hisp(t) on current measurement results
notes a particular set of superobserver records that contaifgV(t), can be upgraded to stochastic master equation
the recordN;(t) in channeli. We define (SI_\/_IE). A SME is a conditional master equation plus a prob-
ability distribution P[dA/(t)] for the measurement results
B N (D) Ni(D) dA/(t). This probability distribution can be obtained from
Oi(t)_NZ(t) %t) PLN G I Trsp[Ni (1) Tp[N ™. Eq. (4). P[dA{t)] is a conditional probability to get current
TN measurement resulth\(t) provided that the measurement
records of the superobserver until timare A(t), that is,

pLAM), MD)]
plMB]

where we used Bayes rule. Hgod NV(t),N(t)] is the joint
probability of having measurement recorli$t) until time't,
and of having measurement resultd/(t) at timet. In the
Markovian approximatioP[ dA{(t)] depends on the records

N(t) through the conditional density matrixt),
In other words, an observéihas no more information about
PLAMt)]=P[dM1)[p(D)].

the superobserver’s records than the information already
contained in his own records. . o
A better measure of correlations between density matrice§he dependence of this probability distribution on the super-
is fidelity [17], which is defined as F(p;,p;) observerp(t) leads to correlaupns between dlffe_rent mea-
={Tr[(\/Epj \/E)uz]}z_ This can be easily calculated in two surement ch(_'mnels we are going to explore using a set of
dimensionsF(pi,pj)=Tr(pipj)+2(de'pide'rpj)1’2. Unfortu- SMEs dgscnbmg the stqchasnc evolutlpns fp(t) and
nately it is more difficult to compute for more general casespi(t). This set of stochastic master equations is given by
and for this reason we will use in the following relative pu-

(19

Using Egs.(7) and(8) it is easy to check that this average
relative purity equals the average purity of the state ascribed
to S by observeii, and that it is also equal to the autocorre-
lation O;;(t) introduced in Eq(13), namely,

PLAMt) ]=p[dMb)|MD)]= (20

oi<t>=on<t>=N% PINi(D]Trsp[Ni(D].  (16)

(21)

. ; = +

rity as a measure of correlations. dp()=dtLOp(1) + MargyOp(b), (22
In order to make a quantative study of correlations be- do: () =dtLO p: (1) + M Opi(t 23

tween different measurement channels it will be convenient pilt) At an o OPi(b), @3

to work in the framework of stochastic differential master

equations. We first simplify our notation: we will denote the PLANy(1), ... dNc(B)]p(V)]

density matrix ascribed to the system by the superobserver, Trsen Py (1).dn (1) Psep(t+dt)

who has measurement recorti®' | as = = (24)

Trsep P (1) Psen(t)

PN 1=p(1), (17

We refer to this set of equations as a multiple channels sto-
chastic master equatidiMyCSME).

We will use the above formalism to address questions
regarding correlations between measurements on different
channels.

and the density matrix of observér whose measurement
record isN;(t), as

N; =pi(t). 1 . . .
PINi(D]=pi(D) (18) What is the average correlation between the density ma-
Also. we will denote the measurement record® of the trix qf a single observepi.and.the superlobservers density
) NG hich matrix p? We shall quantify this correlation by the average
superobserver, and his measurement resluN/f% » WRICR,  relative purityO;(t) defined in Eq(15). As a shorthand, we

respectively, contain the measurement reddrt) and the

will write it as O;(t)=Trp;(t)p(t), where the overline
measurement resultN;(t) on channel, as

means the weighted average defined in @§). This relative
AN g purity is a measure of hpw different, on average, is the
B (0, knowledge of the observerfrom the knowledge he would

022109-4



CONDITIONAL QUANTUM DYNAMICS WITH SEVERAL . .. PHYSICAL REVIEW A 69, 022109 (2004

have had if he had access to the records of all the other

observers. He cannot know more about the siéte that the dp;=dt

superobserver ascribes to the system that he can infer from

his own measurement record only. The extracted information

can be measured by the average purity of the single observer

state O;; (t) =Trp2(t) [Eq. (16)]. Even if the superobserver

density matrixp(t) had higher average purity, the average

relative purity O;(t) would be equal to the single observer dN,(p)=7,dt[R>+Re *Trpa+Re" *Trpa’+ Trpa’a].

purity, O;(t)=0;(t), as derived in Eq(16). This equality (27

will be illustrated with several examples in Secs. V and VI.

0;i(t) is maximal for measurements in a basis correlated’hese equations for the conditional evolution of the density

with the pointer stategl1]. matrices of the system, written in the interaction picture rep-
What is the average correlation between different singleesentation, are valid in the rotating-wave approximation.

observer density matricgs and p;? We shall quantify this Here we use [toversion of stochastic calculus. The first

correlation by the average relative puri®;(t) defined in  terms on the right-hand sid®HS) of Egs.(25) and(26) are

Eq. (13, which as a shorthand we write a®;;(t)  of Lindblad form and describe damping and decoherence due

=Trp;(t)p;(t). In other words, how much do different ob- to spontaneous emission of phonons. We have set the damp-

servers agree about the state of the system? In Sec. IV wag coefficient to 1. The secor{dtochastit terms feed back

will show that for an initial Schrdinger cat state made of into the master equation information about the state of the

Iar_ge amplitude_ coherent statésoherent states are perfect system gained by observers. The coefficigrtR exp() is

pointer states in the model of zero-temperature quanturthe amplitude of the local oscillator in the homodyne detec-

Brownian motion, and for measurements in a basis of they,,[19]. For simplicity, we are assuming here that all observ-

environment correlated with them, observers will, after ang g herform the same kind of homodyne detection, so that the
initial transient, reach full agreemer@®;;(t—~)=1. Typi-

I L ih I ts V and VIt amplitudesR; and phases); are all equal. We will lift this
fnaer)& ?SS ﬁg?n gr]fec(ta E)Jf“i?p ee?sobet?grs'whsg the’obge?\%?‘?,'estriction in later examples. The number of phonons de-

P . 9 . Sected by observer in an infinitesimal interval fromnt to t
measurement basis get closer to those environmental state€s

correlated to the pointer basis of the system. For resonanc dt_is dNi(t) e{l’l}’ with e.m. avgrage glvgn by Eq27)
fluorescence from a two-level atom subjected to direct pho@nddNidN;=&;dN;. The efficienciesy; of different detec-
todetection (see Sec. Y we find an anticorrelation0;; tors can be defined as the fractions of p.honpns monitored by
<1/2. Each observer learns something about the state of tHarticular detectors. In the phonodetection linR<0), the
system but their estimates of the staigt) are anticorre- average detection rate E@7) is proportional to the average
lated. The two-level atom is very far from being classicaloccupation number. Whenever a phonon is detectd; (
and, what is more, photodetection is very far from being a=1 for anyi) the occupation numbers pare reduced by 1.
measurement in a basis correlated with the most predictabl@ the homodyne limit R>1) the detection rates measure
states. the coherent amplitude gte*'?a+e~'?a’) of the state of

the system.

IV. QUANTUM BROWNIAN MOTION To illustrate how different observers are gaining informa-
tion about the system and how correlations between different
measurement channels arise in the process of continuous

In this section we consider the well-known model of measurement we consider superpositions of large amplitude
quantum Brownian motion consisting of a harmonic oscilla-coherent states. According to the exact solufid®—22 co-
tor (the systeminteracting with a reservoir of harmonic 0s- herent stategz,), such thata|zy)=z|z,), decay to the
cillators (phonons with a position-position coupling. We ground state likelzo €7 ') =|z) without producing any en-
will restrict ourselves to the case of a zero-temperature enropy. At T=0 they are the perfect pointer states of the quan-
vironment. This model represents a damped harmonic oscitum Brownian motion modgl23]. The decay to the ground
lator. The self-Hamiltonian for the system M=wa'a, state takes place on a time scale of the order of the damping
where w is the frequency of the oscillator arala’ are  rate, which we have set to 1. In a subspace spanned by
bosonic annihilation/creation operators. Imagine that a set df+ z) and|—z) a general density matrix is
observers perform homodyne detection measurements on the

+[dNi—dN;(pi)]

1 1
apja’— EaTapi —EpiaTa

(a+y)pi(@+y")
Tl (a+y)pi(a’+y")]

, (26)

Pi

A. Correlation of the outcomes for pointer state measurements

environment of phonons so that each of them gains informa- 1+A(1) 1-A(t)

tion about the state of the system oscillator. Given the set of (D)= > |+2)(+2|+ 5 |—2)

records of all those observers, the MCSME of the system

oscillator is[18] X{—=2z|+C(t)|+2)(—z| +C*(t)|—2)(+ 2.

(28)

1 1
apa’— —aTap—EpaTa

dp=dt 5

+2) [dNi—dN;(p)] o _ | .

! Substitution of this density matrix into E¢R5), and subse-

quent left and right projections drt-z) [24] give stochastic

, (25) differential equations foA(t) andC(t). C(t) decays to 0 on
a decoherence time scale which in our subspac¢-of)

(a+y)p(@’+vy") .
Trl(a+y)p(@’+ "]
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=|+rexp(y)) is given by 1f2. For initial r>1 this deco-
herence is much faster than damping and it takes place muc
before the statetz) decay to the ground state. In the op-
posite case of <1 the state$*z) decay to the ground state
before they can be distinguished by the environment. Both
limits were considered in Ref20]. Coherent states with co-
herent amplitudes- z that differ less than 1 cannot be dis-
tinguished. Here we concentrate on the distinguishable cas<
of r>1. In this limit we can self-consistently ignore damp-
ing and focus on the decoherence and measurement proces
In the homodyne limit R>r), where detection rates are fast
as compared to the spontaneous emisdidecoherende
time, at any given time the correlators for the increments

dn,=dN;—dN;(p) are

dn=0 0 1 2 3 4 5
: ’ time (1)

dnidnj~ 5ijd_Ni~ 5”. 7; R2dt+ O(R). (29 FIG. 1. A single realization of the stochastic trajectorfgs)

(thick line), Ai(7) and A,(7) (thin lines for 7,=0.7 and 7,
=0.3. The superobserver’(7) settles at+1 aroundr~1, it is
followed by A;(7) after ar delay~1. A,(7) after a long period of
indecision settles down at1 at 7=5.

In this limit the increments can be approximated @
=, RdW, wheredW’s are Gaussian Wiener increments,
such thad W, =0 anddW,dW, = &;;dt [6,7]. After introduc-
ing a variableB asA=tanhB, and translating to Stratonovich j,st as for the case of the superobsefter. (25)], substitu-

convention, the superobserver’s equationBareads tion of the ansatz Eq28) into Eq. (26) and neglecting any
O(1/R) terms, leads to the equation for the single observer
dB B
4, = 7tanhB+ 2> Vr6(7), @0
1

dB;

—— = 5, tanhB; +[ 7; tanhB— 7; tanhB; + v, 6]

where we have defined a new time variable 4tr2 cos(¢ dr

Tw) and_n=2i77i - Here 6, are stochastic continuogs func- = 7 tanhB + \/E@i ' (33)

tions of time, defined adW,= 6;dt. These stochastic func-

tions are white noises with correlators where A;=tanhB;. The terms in the square brackets come

from the stochastic term in E¢26). Note that the superob-
0:(71) 0;(72) = 8 (1~ 7). (31) server’'sB appears in the evolution equation of tBe asso-

ciated with the single measurement chanin€lhis reflects
the fact that the single channel and multiple channel mea-

esSurement results are correlated in the MCSNHg. (24)].

Let us now study how the evolutions Afaccording to the
superobserver and single observers are correlated. On the
one hand, according to E¢30), the superobserver evolution
settlesA=tanhB at =1 after the transient time~1/7. On
the other hand, the single observer evolution is given by Eg.
(339), and correlations between the two evolutions enter
through the first term in the most right-hand side of that
gquation containing the superobserde+tanhB. Once A
=tanhB==*1 is chosen, the deterministic drift term
n; tanhB on the RHS of Eq(33) will inevitably force A,
on his own recordsiN;(t) only. Since we want to study =tanhB; to make the same choice after the longer transient

correlations between the measurement records, the evqutithne 7~1/7;. Eventually all observers will settle down at

of p; is given by the MCSMEEG. (26)]. Taking the homo- A=Ai=ﬂfl, zind the a\;]erage rlelativ? pu.ritiesfwill be equal
dyneR>r limit in the single observer case we get 0 1,0;=0;=1 (see t e single realizations for two mea-
surement channeis=1,2 in Fig. 1.

In our example the observers finally find out which of the

According to Eq.(30), B initially performs a random walk
driven by the noises but once it diffuses into a positiv
(tanhB=+1) or negative (tanB=-—1) domain, the deter-
ministic force »tanhB takes over and inevitably driveB
towards positive or negative infinity. After the transient time
7~1/7, A settles down aA= =1 which corresponds to the
pure statd +z) [see the superobserver’s trajectdyr) in
Fig. 1]. By this time an observer who knows alN;(t) can
tell whether the system oscillator is in the std® or

This happens also when the total efficiengys less than 1.
An observel ascribes to the system a stateconditioned

dN; —dNi(pi) =[dN;—dNi(p)]+[dNi(p) —dNi(pi)] two coherent states is the state of the system. It is possible
~ because the initial coherent states have large amplittides
~\nRAW+ 279 rR(A—A;
VmRAW+271R( ) with |z|>1 so that the decoherence time is much shorter
Xcoq— ). (32 than the spontaneous emission time. In the opposite regime
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of |zZ|<1 the decoherence time is longer than the spontane- (By+ 717)?

ous emission time, and the observers will not find out the r{— T)

state before it decays to the vacuum state. P_(7,B))= ! (37)
N2y T

B. Independence of the outcome distributions As we do not know which superobserver’s state will be cho-

To have a better feeling of the MCSME formalism we sen, the two probabilities add to gi&? =P, +P_. Itis
consider the following example. There are two observers easy to check thaP(®=P® in Eq. (35). The probability
=1,2. The measurements by observer 2 affect the evolutiodistributions coincide, so observer 1 cannot find out if there
of the superobserver’s density matgx Since the environ- is any observer 2 even if observer 1 detects just 1% of
ment is also monitored by observer 1, in principle, observephonons and the other more efficient observer detects 99%
1 may be able to identify perturbations pfproduced by or almost all phonons.
measurements of observer 2 and realize that there is another
observer monitoring the system. In Sec. Il we gave a general v. TWO-LEVEL ATOM: DIRECT PHOTODETECTION

argument that, as a direct consequence of the quantum Mar- , i
kov approximation, observer 2 cannot find out if there is Ve wantto contrast the quantum Brownian motion model

another observer. Here we present a simple calculation whicHith an example of a system with a small Hilbert space, such
illustrates this fact in our example of superposition of coher-aS @ driven two-level atom coupled to the radiation field, for
ent states. which we do not expect perfect pointer states. In Appendix A

To begin with, note that Eq30) is equivalent to the fol- We derive the MCSME for a two-level atom driven by a laser
lowing Fokker-Planck equation for the probability distribu- 0€am with frequency» and whose emitted radiation is sub-

tion P(r,B) for B at time r [25], jected to photodetection. It takes the form
1 1
1 0P d 1 52 do= —i t_ Tt t
-7 7 p=—idtfwoy,p]+dt| cpc'— sc'cp—=pcC C)
. aBtanr{B)P+2 52 P. (34) 2 2
—— [ cpct
We can compare the following two situations. + 2 [dN;—dNi(p)] Trcact P (39
(1) Observer 1 is the only observer g,=0. His prob- ' rcpe’]
ability distribution evolves according to E¢34). The initial 1 1
conditionP(0,B;) = 6(B;) leads to the solution dpi=—i dt[wo, ,pi]+dt( cpict— ECTCPi _EPiCTC)
By— 717)? By+ 717)?
ex;{—( 1= 717) ex _( 1+ 717) CpiCT
1 2T 27 AN =dNi(p) ]| =——— —»pi | (39
PM(7,By) = + : Trlcpic']
N2T T N2T T
(39 dN;(p) = mdtTr pe'c]. (40)

(2) There is an observer 2 withy,> ;. In this limit,  The density matrix of the atom is a X2 matrix
where the perturbations by observer 2 are the strongest, one

is most likely to suspect that the less efficient observer 1 p=13[I +Xxoytyoy+zo,]. (41)
could find out about the more efficient observer 2. The evo-

lution of B(7) is mainly conditioned upon the measurementsThe lowering operator is= (o, —ioy)/2, and the number of

of observer 2. The multiple observérsettles at+1 on a  photons detected in channebetweent and t+dt is dN;
time scale 1% which is much faster than the timesi/ob-  €{0,1} with an average proportional to the occupation num-
server 1 needs to find out about the system. The state of tHzer of the atom, see E¢40), anddN;dN;= &;;dN;. Follow-
system is settled without any influence of measurements dfig each detection of a photoj@ny dN;=1), the atom is
observer 1. Suppose that, with the probability 1/2, the mulknown to be in the ground stafthe —1 eigenstate ob,),
tiple observer state tar=+1 was chosenB; evolves ac- from where it is excited again by a laser beam through the
cording to Eq.(33) with a fixed tantB=+1. The probability Hamiltonian termwo,. The efficiency; of the detector

distribution forB; is used by observeirris the fraction of photons which are de-
tected by him.
(By— 717)2 When o>1 the most predictable states of the two-level
ex;{ _T> atom areo, eigenstates, i.e., they are determined by the

P.(7,B))= ) (36)  Hamiltonian wo, describing the excitations via the laser
N2mmT beam[26]. These states are far from perfect since they have
a nonzero initial rate of purity loss. Moreover, while eigen-
Also with the probability 1/2, tanB=—1 can be chosen. states ofo, are most predictable, they are not the most ef-
Now tanhB=-1 is fixed in Eq.(33) and the probability fective in making an imprint on the environme(ds real

distribution is pointer states should beg4,9,140. In particular, the
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environment-system Hamiltonian does not preserve them. Ag=Y(t—t,), z=Z(t—t4). The probability that an observer
a consequence, we do not expect agreement between obsefyi detect a photon betweenandt +dt after the last detec-
ers even if they are measuring in a basis of the environmenfy, py any observer is

correlated to ther, eigenstates of the atom. Direct photode-

tection is a way to find out if the atom is in the ground state. 1+Z(t)

This state is complementary to the most predictable states. dNi[p()]=dty —5—. (45)
That is why we expect the relative purity between observers

to be very poor. In fact we will find any two observers to be The above argument can also be applied to B6). Every

anticorrelatedQ;; < 1/2. time an observer detects a photon his stape jumps to the
ground state, from where it is excited according to

A. The @>1 limit

For w>1 Egs.(38) and (39) can be solved rigorously. Xi(1)=0,
Suppose that no photons are detected for a certain period of (3 (1= )t o
time, dN;(t)=0. During this time the density matrix in Yi(t)=e 7 sin 2wt (46)

Eqg. (41) evolves according to the deterministic part of Eqg. (31— )t
(39). The unitary self-evolution with the Hamiltoniano is Zi()=—e 77" cos 2wt.
mixing y andz with the frequency @. It is convenient to use

the interaction picture, where The timet here is the time since the last detection by the

observeri.
X=Xint»
B. Distribution of waiting times

Y=Yint COS 20t —Zjn; SiN 2wt In this example we shall see again that a single observer

cannot find out if there is any other observer. We will con-
sider just two observeris=1,2 and we will derive the distri-
bution of waiting times(times between subsequent detec-
tions) for observer 1. We will show that this distribution
does not depend on, so it is not sensitive to the presence or
absence of any observer 2. Any higher order correlations
between detection times can be expressed by this distribution
of waiting times because every time a photon is detected by
A 1 observer 1 the atomic state goes down to the ground state so
gt = 2 Xt that any history before the detection does not affect evolution
that follows that detection. The distribution of waiting times
contains all the information observer 1 can possibly extract
dYint __ § _ ) from his measurements.
(1=7)Yint» (43 .
dt 4 Suppose that observer 1 detects a photon at time.
What is the probabilityw,(7) that he will detect the next
dz, photon at timet= 7 ? If observer 1 were the only observer,

(42)
Z= Y SIN 20t + Zj,; COS 2wt,

and the variation in time oy, Yint»Zint IS SlOW as compared
to w. When we substitute the density matrix E41) into the
deterministic part of E(.38), use the interaction picture, and
average over one period of oscillation with frequergywe
will obtain the following equation$27]

3
at = 217 so thaty; = 7, then the answer would be
JT 1+Zl( Tl)

2 ! ) . exg — | drypy——=——
matrix p is projected to the ground state. All the information 2 0 2
about the previous evolution gf(t) is forgotten. Suppose
that a detection took place at tlnneio. Just aft+er the detec- Tyt (0>1). 47)
tion the initial conditions arex(0")=0, y(0")=0, and 2
z(0")=—1. Before the next detection happens,y,z

Every time a photon is detected the superobserver density Wl(T):( 7711+Zl( 7)

evolve according to Eq$42) and (43), The first factor is the average detection rate &), and the
second one is the probability that no photon is detected be-
X(t)=0, tween O andr. As it should bew; () is normalized to unity.
To obtain the final expression fer,(7) in Eq. (47) we have
Y(t)=e" CAI=Mtgin 2pt, (44)  neglected all terms which vanish far>1 as well as fast
oscillating terms~cos 2v7.
Z(t)=—e G0t cos Ant, If there is a second observer, then the detection rate of

observeii depends not om,(t) but onz(t) [see Eq(45)]. In
wheret is the time elapsed since the last photodetection. Thigeneral there may be=0,1, . . . > detections by observer 2
solution is valid until the next detection takes place. The nexbetween 0 and. Every time there is a detection by observer
detection at=ty will bring p to the ground state again, from 2 att=t;, (j=1,...,), z(t) jumps down to—1. For
where the system will be excited accordingxte X(t—ty), t;<t<t;,, it evolves ag(t)=Z(t—t;). The probability that
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there is no detection by observer 1 between times 07and tq, ... t, is Dy(t1, ... t,,t), given by Eq.(48). The nor-
given that there are detections by observer 2 at the times malizing factor for this distribution is
ty, ... th, IS given by

- o t t t
Dn(ty, ..ty 1) =0a(t1)0a(to—1y) .. . 02 ”1220 fo dtfodtljtldtZ' o ft 7ldtn
X(tn_tn—l)ei(VIZ)(Titn)l (48) 2

whereq,(7) is distribution of waiting times for observer 2 XDalty, -t ,t)~a (0>1). (52)

given that there are no detections by 1, ) _ )
Given that the last detection by observer 1 took place at time

0 and the last detection by any observer happened atttime
the relevant relative purity is

o (t)=Trps(t)p(t)
1 1

qz(7) ~e‘("’2)7%(1— e CNI=MN7cos207) (w>1),
(49

and the factor™ (72"t is the probability that no detec-

tions by any observer take place betwegrandt. The dis- =2 4 Z e @A-9)ta= @M (1= n)(t-t)) cog Aut

. . o . n-
tribution of waiting times for observer 1, averaged over de- 2 2
tections by observer 2, is given Wy, multiplied by the (52)
detection rate of observer 1 at and averaged over all pos-
siblen andty, ... t,. Therefore the final expression for the This relative purity, when averaged with the probability dis-

waiting time distributionf,,;(7) for observer 1 in the pres- tribution (48), gives
ence of detections by observer 2 is given by "
o0 t t t
0,=n; > j dtf dt, | dt,-- f dt,
n=0 Jo 0 ty tho1

fwait(T):nZO fodt1 tdtz---ft dt,Dn(te, ... tn,7)
- ! n-1 XDp(ty, ... tn,t)0lM(t)
x%[1+2(7—tn)]~%e—<’n’2)f (0>1), (50 1 m -
T2 26-2p)
where, again, we have neglected terms which vanishwfor
>1 and any fast oscillating terms. In Appendix B we show
how to obtain this last formula. We conclude that the distri-
bution of waiting times for observer 1 in the presence of
detections by observer[Eq. (50)] is the same as that for no
observer 2 preserftEq. (47)]. The distribution of waiting
times for observer 1 is not sensitive to observer 2.

where we have neglected &i(1/w) terms.

On the other hand, the average purity gained by observer
1 can be calculated as follows. According to EG&), the
purity at the timet after the last detection i%44(t)
=Trp2(t)= %+ 3 exd — 3(1— n)t]. The probability that there
was no detection between 0 anid exp(— 7;,t/2). Therefore,
the average purit¥D,4 is 044(t) averaged ovet,

C. Average relative purity betweenp, and p

4t e (m2)t
Let us now find out how much does a given observer, say JO dte " oy(t)

i=1, know about the state of the superobserver. To this end 0y;= -
we will calculate the average relative purity between the f dt e (m/2t
single observer and the superobserver density matr@@es, 0

=Trp.p. IMmagine the following situation. Take an arbitrary
instant of time7=0 and callo{"”(7=0)=Trp,(7=0)p(r
=0) the relative purity given that the last detection of ob-
server 1 took place at=—t and there wera detections by
observer 2 between=—t and7=0. Then the average rela-
tive purity O, evaluated at the time=0 will be equal to the

t average(i.e., average over all possible initial times of de-
tection by 2 of the relative purityo(l“)(7-= 0) given that
there were no detections by observer 1 between-t and

71

:§+—2(3_27]l). (54)

As expected from Eq(16), O,; coincides withO; (see Fig.
2). Let us now comment on the limiting caseg=0 and
n1=1. In the former case we g&d,,=0.5, which corre-
sponds to no information gain by the observey (s maxi-
mally mixed. In the latter case we géd;,;=1, which is
maximal gain of information, angd, is pure.

D. Average relative purity O;;

7=0 and averaged over all the possible numireos detec- The average relative purit{,=Trp;p, has contribu-
tions by observer 2 and his detection tintgs. .. t,. For tions from the following two situations.

the sake of clarity, we now shift the time origin as-7 (1) The last detection by observer 1 took place at time 0.
+1, so that the last detection of 1 took place at time O anBetween times 0 antl there weren=1 detections by ob-
we are interested in evaluatir®, at timet. The unnormal- server 2 at the times, ... t,. The last detection before

ized probability distribution for no detections by observer 1was made by observer 2 at time. According to Eqs(44),
between 0 and, andn detections by observer 2 at the times the relative purity at is
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FIG. 2. Average purityO,;,—1/2 and average relative purity
0,—1/2 for an observer performing photodetection measurement
The initial condition is maximal lack of knowledge, i.@(t=0)
=p.(t=0)=1/2. The superobserver’s efficiency is=0.6 and the
single observer one ig; =0.5. According to Eqs(53) and(54) the
asymptotic value i©,(%)=0,4(»)=0.125. The stochastic trajec-
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-0.025 |

0,-12

-0.05 : : : :
10 20 30 40

time (t)

50

FIG. 3. Average relative purit9,— 1/2 between two observers

é)erforming photodetection measurements. Their initial condition is

rmaximal lack of knowledge, i.ep;(t=0)=p,(t=0)=1/2. The ef-
ficiencies aren,;= 7,=0.5. According to Eq(59) the asymptotic
value of the relative purity is-0.025. The stochastic trajectory is
an average over 256 single realizations.

tories are an average over 256 single realizations. The small dis-

crepancy betwee®, andO4, in the figure is an artifact of the finite
number of realizations used for calculating the averages.

o{D(t)=Trp1(t) pa(t)

% n %e, () (1= n)te= (A= 72) (1=t cos 2t , .

(59

The normalizing factor for the probability distribution is

- % t t t
Nyo= 2, f dtf dt, dt2~--f
n=1 Jo 0 ty tho1

dt,

XD, (t t )~ (=1), (56
M (ot M) ’
and the averaged relative purity is
* o) t t t
oB=n}> dtJ dt1J dtsz dt,
n=1J0 0 ty th-1
XDp(ty, ... tn,1)0fD(t)
1 (71t 172)
=5 (57)

2 - 72(6— 11— 1) (T—m—4m1)

(2) The last detection beforewas made by observer 1
instead of observer 2, as in the cd4¢ The description of

In general,»,# 1, and the two situations are not equally
likely. Let us callp®®) the probability that casél) happens;
clearly for case(2) we havep®=1-p). The probability
pM) is given by pM=n,,/n;=5,/(71+ 7,). The relative
purity averaged over the two situations is then

71 o2
R

72 )

035 +
m+ny 2
1
T2

12

7172l 6—2(91+ 12)]
2(6— 71— 12)(3—271)(3—27,)

(59

In Figs. 3 and 4 we show simulations of the time evolution of
the relative purityO4, for the casen,= 7, and 7, # 7,.

Note that the average relative purity is manifestly less than
1/2: the single observer statps and p, are anticorrelated.
The reason for this anticorrelation can be explained as fol-
lows. Suppose that the states,p,,p are initially fully cor-
related(i.e., relative purity equal to)1 Observer 1 is most
likely to have a detection when the superobserver’s state is
excited @~ +1). The hypothetical positive correlation
means that whez~ +1, then alsoz;~+1 andz,~+1.
Suppose that a detection by observer 1 happens. The super-
observerz and the single observe; jump down to—1. The
observer 2 has no clue that there was a detection by observer
1. What is more, the superobserveris close to—1 so
observer 2 cannot detect a photon and jump,te —1. His

Z, remains close to+ 1. Just after the detection the product

this second situation is the same as above, except that 0Bz >0 but the productz;z,<0. This mechanism cannot
servers 1 and 2 are interchanged. In particular, the final remakeO,<1/2 but it can and it does maka,,< 1/2.

sult for the relative purity reads

1 72( 71+ 72)

0R)=>— .
2 (6= 1= 1) (T—m1—47,)

12

(58)

We have solved exactly the problem of correlations be-
tween multiple measurement channels in the limitwof 1.
This limit is sufficient to illustrate our ideas. However, the
exact solution for arbitraryo of the resonance fluorescence
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0 ' ' ' ' Here v;=R; exp(¢,) is the complex amplitude of the local
oscillator of the detector. We will eventually take the limit
R;— . We allow each observer to have his own homodyne
phase¢;, so that they can measure different quadratures,
i.e., they measure noncommuting observaljfeselated ex-
perimental realization of measurements of noncommuting
observables in two channels in cavity QED was carried out
-0.025 - T in Ref. [29]). The detector currents are proportional to Eq.
(62). The casep;=0 corresponds to measurement of the
quadrature ang; = /2 toy quadrature. The larg®, limit of

Eq. (60) is

0,-12

1 1
dp=—idt[woy,p]+dt| cpct— ECTCp—EpCTC

_0.05 1 1 1 1
0 10 20 30 40 50

time (t)

+ > i dW[cpe i+ pcletidi
FIG. 4. Average relative purit,,— 1/2 between two observers [

performing photodetection measurements. Their initial condition is gy totid

maximal lack of knowledge, i.ea,(t=0)= p,(t=0)=1/2. The ef- —pTr(cpe "+ pcle” )], (63)
ficiencies aren,;=0.7 and ,=0.3. According to Eq.(59) the
asymptotic value of the relative purity is0.022. The stochastic

‘ ; ) i wheredW, are Gaussian Wiener increments such thet,
trajectory is an average over 256 single realizations. —_—

=0 anddW;dW;= §;;dt. To derive the larg&; limit of Eq.

problem in Ref.[28] suggests that, with some extra work, (61)__we _first__split dN;—dNi(p;)=[dN; —dNi(p)]
our formulas for average relative purities can be generalized [dNi(p) —dNi(p;)]. In the largeR; limit the first term is
exactly to arbitraryw. proportional toR;y/7;dW; and the second term is propor-
tional to R;zdtTrc(p—pi)e ¢+ (p—p))cTe™#]. The
large R; limit of Eq. (61) reads

VI. TWO-LEVEL ATOM: HOMODYNE DETECTION

As we saw in the preceding section, direct photodetection

is a way to find out if the atom is in the ground state. One ¢y, = —j dt[wa,,p;]+dt| cpict— %CTCpi_%pinC
can also measure different quadratures of the two-level atom

by performing homodyne detection on the radiation emitted ik

from it [19]. In general, it is possible to measure the expec- W+ pdtTie(p—ppe'

tation value of the operatok(cos¢—y sin ¢), whered is the +(p—pi)cTe™ i} (cpie i+ pictet#)

phase of the local oscillator in the homodyne detector. This , A

kind of measurement tends to localize the state of the atom —pTr(cpie”'?i+pice™ 9], (64)

around the eigenstates of the operatog ¢os¢— oy Sin ¢).

The MCSME is(see Appendix
( PP A A. Average relative purity betweenp; and p

1

dp=—idtfwoy 'p]+dt( cpc'— ECTCP_E”CTC to the above equations for all values of the efficiencigs
For small values of these efficiencies it is possible to work
(c+y)p(cT+ ) ) out various relative purities by a perturbative expansion in

e Pl owers of ;. For =0, the conditional master equation

Trl(c+%)p(c™+¥)] FEq. (63)] iglthe unc?(l)nditional master equation, whigh has a

(60 stationary solutiorpgs. In the limit >1 it is equal topgs

=1/2 or Xss=Ys—Zss=0. The full density matrix is per-

1 ) Unfortunately it is not possible to find analytic solutions

+Ei [dN;—dNi(p)]

) 1 turbed from this stationary state by the noisd%/,, and the
dpi=—idt[woy,p;i]+dt| cpic’— ECTCPi_EPiCTC> magnitude of the perturbation grows wit. We expandp
=psst Op, the last term containing those perturbations. Let
| (ctypict+y) us write 8p= (o +yoy+2z0,)/2. We expandk asx=x")
+[dN;—dNi(p;)] P +x@+ ... wherex is of order 7%, x® is of order
Trl(c+yi)pi(c'+ )] 312

7', etc. Similar expansions are used foandz. To first
(61)  order in 7} Eq. (63) reads

dNi(p) = ndi{ R2+R.e 1% et ioiTrpet t dx® 1
dN;(p)=ndt{R + Rje”"*iTrpc+R;e™'?*Trpc +Trpc(c(:3]2.) o :_Ex(l)Jrzi 7,6, cose; ,
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dy(l) 1 0.1 T T T T
gr =~ Y2022y sing,
dzb (69 o
=—zW+2py®, £ T O
a
2
These equations have a solution g 0.05 L i
©
S
xW(t)=2> xM(b), g
I (=%
(66)
yPm =iz =2 [y =iz,
I
% 10 20 30 20 50
where time (1)

t FIG. 5. Average purityO,,—1/2 and average relative purity
1 — —
Xi( ()= \/ECOS@ f_ dre- (M2 7g, (1), 0, —1/2 for an observer performing homodyne measurements. The
efficiency isz;=0.1 and the homodyne phasedis=0. According
. (67) to Eqg. (70), which is valid for small efficiencies, the asymptotic
W4y i W4y — — o cin b — (347 2i w)(t—7) . value of the average relative purity and average purit®js- 1/2
yi (O =izi7() \/Zsmd)' f_wdTe 0i(7). =04,—1/2=0.05. In the scale of the figu@, andO,; practically
coincide. The stochastic trajectories are an average over 256 single

To leading order inys the single observer equatiol) is ~ realizations.
dx® B. Average relative purity Oj;
Ty 0 . . . -_—.
dt 2% + /6, cose, The average relative purit®,,=Trp,p, iS zero to lead-
ing order in7; . To get a nonzero average relative purity we
dy® 1 have to go one step further in the perturbative expansion for
— = — —yM 20z~ 5,6, sing,, (68) X, y, andz The equations for the second-order terms that
dt 2 follow from the single observer equation E4) are
dz" 0.3 : : . .
W =— Zi(l)+ 2wyi(l) .

These equations are solved by the already introducec
x® y® 21 To leading order iny’s the relative purity

Oi = Trpip iS

e
[

0=+ 1Ty Oy 2]

=1+ 3 xOx® 4 yDy @4 721717 (69)

purity and relative purity
(=]

A straightforward calculation leads to the following station-
ary average relative purity:

Oj=3+ni[5 coS ¢+ 5 sin e ]. (70 0 : ; ' '
0 10 20 30 40 50

time (t)

As we can see from Eq69) the average relative purity
coincides with the average puri€;; . The latter is thfa high- FIG. 6. Average purityO,,— 1/2 and average relative purity
est for measurement basis correlated to the pointer Stat@s, _1/2 for an observer performing homodyne measurements. The
basis of the system, i.e., whefy=0. Through this measure- efficiency is»,=0.5 and the homodyne phasefig=0. We do not
ment one can find out most about the system. In Figs. 5 angxpect Eq.(70) to hold for such a big efficiency. The stochastic

6 we plot the average relative puritp; and the average trajectories are an average over 256 single realizations. The small
purity Oy, for different values of the efficiencies and homo- discrepancy betwee®; andO,; in the figure is an artifact of the
dyne phases. finite number of trajectories used to calculate the averages.
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dxl(z) 1 0.02 T T T T
2 1 : 1
ar Exi( )+ 7 coS ix(V— n; sings; cosehiy (Y,
0.015 | |
dy® 1 .
at Eyi(z)_zwzi(z)Jf 7i Sir? ¢y .01 | 1
- Q
— 77 Sin¢h; cosix( Y, T 0.005 | |
o.“-‘
dz?
S N ZD+20y?). (70 or
dt
Formal solutions of these equations are -0.005 | 1
t ) ) Il 1
x(t)= ﬂif dre (207 00Ty 10 20 30 40 50
- time (t)
x[cos ¢ix{V(7)—sing; cospy(M(7)], FIG. 7. Average relative purit®,,— 1/2 between two observers
(72 performing homodyne measurements. The efficienciesyarer,
t ) =0.1 and the homodyne phases abge=¢,=0. The stochastic
2 () — —(314) (t— 1)+ 2 w(t—
yi( )(t)i|zi( )=n f,xdTe EEED=2e=) trajectory is an average over 256 single realizations.
x[sir? ¢y{V(7) —sing; cos¢x™(7)].  measure in environmental basis most correlated to the

pointer basis of the system.
To the first nonvanishing order im; the average relative  Several questions regarding correlations between mea-
purity Is surement records of different observers were posed. We have
shown that the problem of consistency of sets of data ac-
Op=3+z[X1X2ty1Y2+2125] quired by different observers is reduced to the probability
that a given combination of data sets will ever be detected by
the superobserver. We have introduced average relative pu-
rity to study correlations between measurement records of
different observers. For the model of zero temperature quan-
tum Brownian motionwhich is equivalent to the model of a
damped harmonic oscillatorcoherent states are perfect
=1 4 o ) pointer states. The solution to E@5) for an initial coherent
O1= 5+ M7, COS b1 COS' y+ 5 I 6, sir? ¢2]'(74) state remains pure and it is just a coherent state with decay-
ing amplitude. We have shown that for an initial Sainger

The average relative purity is maximized when both observ-
ers performx measurementsd; = ¢,=0). We verified this 0.01 ; ; | .
formula by numerical simulations using, = ,=0.01. Be-
low, in Figs. 7 and 8, we plot the average relative pu@y
for different sets of homodyne phases and efficiencjgs
= 7,=0.1. These efficiencies are beyond the range of valid-
ity of Eq. (74).

=1+ DI )

SO PP TD (73

We evaluate this expression in Appendix C. The result is

0.005 - b

VII. CONCLUDING REMARKS

0,-12
o

Let us summarize the results contained in this paper. We
have studied continuous quantum measurement with sever:
observers and we have demonstrated that it reduces to th
“single observer” case. The key problem of consistency of
the sets of data acquired by different observers is then re
duced to the probability that a given combination of data sets ~0.01 ) . . .
will be ever detected by the superobserver. We have appliec 0 10 20 80 40 50
the formalism to several examples of quantum optics as well tme ()
asto quantum BrOWnian mOtion. Obsel’vel’s gain information FIG. 8. Average relative purit@lz— 1/2 between two observers
about the state of the system from their measuremenierforming homodyne measurements. The efficienciesyares,
records. We have shown that observers gain most informa=0.1 and the homodyne phases grg= ¢,= /2. The stochastic
tion about the system and they agree the most when theyajectory is an average over 256 single realizations.

—-0.005 | b
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cat state [z)+|—z))/v2 made of large amplitude coherent pansion in terms ofiB; andd B! . When ones discards all the
states, records of different observers performing measuréaformation contained in the environmefivhich is then
ments on the environment in a basis correlated with theraced outone gets an unconditional master equation for the
pointer basis will eventually fully agrel@s shown in Fig. .  system

and the average relative purity will be equal to 1. For the

case when the most predictable states exist, but are not very . N " 1 .
predictable and are not imprinted on the environmemid, dP—_'dt[wUX’P]WLdtZ Cpc'—5CCp—5pCiC.

in particular, do not commute with the interaction Hamil- (A3)
tonian, such as the model of two-level atom resonance fluo-

rescence, the agreement between observers’ guess of tiBe sum over just rescales the spontaneous emission rate of

state of the system may only be partial, and it is even posthe atom. In the following we shall absorb that rescaling in a
sible to obtain anticorrelation between measurement recordgedefinition of time and set the spontaneous emission rate

as in the case of photodetection. to 1.

If the measurements on the environment are not ignored
ACKNOWLEDGMENTS but kept, the evolution of the system is conditioned upon
. them. In the case of photodetection, for most of the time
We are grateful to Robin Blume-Kohout, Howard Car- ey ais no photons are detected. In this case of null results

michael, Kurt Jacobs, Harold Ollivier, Juan Pablo Paz, anqhe density matrix of the system evolves according to
Howard Wiseman for discussions. This research was sup-

ported in part by NSA. Moreover, J.D. was supported in part d =0 )= (D) TITO t Ad
by KBN, Grant No. 2 PO3B 092 23. Pzerdt) zerP(1) = p() T O (1) ], (A4)

1
APPENDIX A: DERIVATION OF THE TWO-LEVEL Ozemo(t)=dt( —i[H.p]-5 > {cfepl|,  (A5)
ATOM PHOTODETECTION AND HOMODYNE '

DETECTION MASTER EQUATIONS FOR MULTIPLE L
MEASUREMENT CHANNELS which is so constructed as to conserve the tracg ahder

the time evolution. When a photon is measured by any of the
Let us assume a two-level atom that interacts with thedetectors, the system discontinuously jumps to the ground
electromagnetic field, which we shall consider as the envistate of the atom
ronment. We will split this environment into different paits

each of which has associated a detect&or examplei may Oone?
denote different photon wave vectors. In the rotating-wave dpond )=, dNj| ——T; |, (A6)
approximation, the dipole interaction between the atom and ! i
the electromagnetic field is
Oonep (1) = micpc’dt. (A7)

_ fa oth
Vm_'; (bjc=c'by), (AL) Here the incrementsiN; €{0,1} are dichotomic stochastic

processes with averagdd;(p) = 7,dtTr[pc'c], % denotes

whereb; andc are annihilation operators for photons and thethe fraction of the environment measured by detetand
atom, respectively. At every instant of tinmiea new part of  f; is such that two conditions must be satisfi¢tly when
the environment is interacting with the system. Indeed, &lp=dp,e,+dponeiS averaged over all recordsit must re-
localized photon wave packet arrives at the atom, interactduce to the unconditional master equation, an@)
with it, and then flies away. Subsequently, a new waveTi[dp, e+ dpone =0. It then follows that f;
packet performs the same process. Imagine that at a given — ;. ,Tr(0,..p)/dN;. Finally we get the superobserver
instant of timet the combined state of the atom and the field master equation for photodetection,
is R(t) = p(t) ® u, wherep is the density matrix for the atom
andy is that for the field, which we assume to be in vacuum,
u=®;i|0){0|;. This series of idealizations are called the dp=—idt[woy,p]+dt
guantum Markov approximation.

The evolution operator for a time intervalt is U(t,t cpc’t
+dt)=exg = (dB'c—c'dB)], where dB;(t)=b;(t)dt has +2 [dNi_dNi(P)](—T_P)- (A8)
commutation relations ' Tricpc]

1 1
cpct— ECTCp— EPCTC)

[d Bi(t),dBjT(t)]= 8, dt (A2) The superobserver unconditional master equati®) is
invariant under the transformatioo—c++y; and H—H
that follow from the (singulay commutation relations —(i/2)2;(y c—vyc'), wherey, is a complex numbef7].
[dbi(t),dbjT(t’)]z gijo(t—t'). The above commutation re- This symmetry is helpful for deriving other unravelings of
lation is of orderdt instead ofdt? [7], as one might have the unconditional master equation, for example, the one cor-
naively expected. For this reason an expansion to first ordeesponding to homodyne detection. In this caseepresents
in dt of the evolution operator requires a second-order exthe coherent amplitude of the classical field of the local os-
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cillator i. Introducing this symmetry into the photodetector =~ APPENDIX C: CALCULATION OF THE RELATIVE
master equation one immediately obtains the homodyne mas- ~ PURITY FOR THE TWO-LEVEL ATOM WITH
ter equation, Eq(60). HOMODYNE DETECTION

_ In this appendix we derive Eq.74) for the stationary
APPENDIX B: CALCULATION OF THE DISTRIBUTION value of the average relative purity between two measure-
OF WAITING TIMES ment channels for the model of resonance fluorescence from
In this appendix we calculate the distribution of waiting @ two-level atom subjected to homodyne detection.
timesf () for the model of resonance fluorescence froma_ We must calculate the different terms of Eg3). Using
two-level atom subjected to direct photodetection. It is givenEd. (72) we have
by Eg. (50),

* —_— t e
ol )= j dt, f dty- - j dtDy(ty, .. ) XOOXPO=7, fﬁxdre*l’a(“f)[cosz¢jxf”<t>x§”<r>
n=0 Jo ty tho1

- —sin¢; cosg;x M (t)yM(7)]. (C1)
X?[l-f-Z(T—tn)], (B1)
Using Eq. (66) and thatdW,dW,= g;;dt, it is easy to
where we recall that show that xV(t)y®D(7r)=0(1/w), so we can discard
that term in the previous equation. Alsa(D(t)xD(7)
Z(r—t,)=—e G0N0t cos2m(7—t,), (B2) = cofepexd—(t—7)/2]. Hence
and thatD, is
xP(0)xID(t) = 5,7; cog i cog ¢; . (C2

n
_ _ 72 _ _
Doty ...t 1=e- -] P22
nlta n7) j];[l 2 Also, x{V(t)x{?(t), which obtains from the interchange

X[1—e~ (A~ NGt i—], is the same. On the other hand,

XCcos2w(ti—ti_q1)], B3
Gt B PP OGP ) He.

wherety=0 is the time of the last detection by observer 1. (C3

Inserting this equation into the previous one, we see that

when doing then time integrals only two terms will survive: To calculate this noise average, we make use of Egjs.

one that stems from the product of all the 1'siy,, and and(72), and

another coming from the products of all the cosihehich

will therefore contain factors of the form (?ngtj)]. All )

other terms in the expansion of the producBipwill vanish 6:( )X V(7") = cosg; e VAT g(7— 1),

upon integration. In the>1 limit we can replace cé(;Zwtj)

by 1/2. We then get

i)y P (1) =—2\gsing e G g7 1)

fuad )~ 2e S a7 at, X008 2o(7=7'), 4
- n-1

where the stochastic noisé@sare defined ad W, = ¢;dt, and
6(7) is the step function. Performing the necessary time in-
tegrations and discardin@(1/w) terms, we get

X
2

n n
ﬂ) —(—%) e~ (M= 7coq 20 7)

PO
2 n=0

1 /nt\" 1 mot)" —T 75 4 . .
a2 Tl T g yDy@ 4+ 202 = 8y sir? i sin ;. (CH)

Finally, the average relative purity between the two single

xe M= N7cog2wT) observer density matrices reads

= ﬂe*(m/Z)T_,_ 'e)

(C6)

w

E) (B4) Oij=3 + 7imj[ coS ¢; cOS p;+ § SIF ¢; Sir? ;.
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